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1. INTRODUCTION

1.1 The ILLIMAC Project

The purpose of this work was to investigate the feasibility

of a special purpose hardware processor for flight simulation. The pro-

ject was supported by The Institute of Aviation, Singer SPD Corporation

and the Department of Computer Science. The Institute of Aviation has

as a definite long-range goal updating its curriculum and activities to

incorporate advanced simulation and sophisticated avionics so that the

student may have a better introduction to the total field of modern

aviation.

The Institute would like a low cost, maintenance-free, high-

fidelity simulator which meets the training requirements from begin-

ning student pilot through private, commercial, instrument and multi-

engine pilots. Recent advances in simulation engineering have made great

contributions to improving the quality of pilot training. Unfortunately

these advances in the engineering of flight simulators have not been

available to most of general aviation because of the high cost assoc-

iated with their acquisition.

ILLIMAC I (University of Illinois Mini Aviation Computer) of-

fers a reasonable probability for providing significant cost reduction

to flight simulation for all levels of application. Present simulator

technology available to general aviation in an acceptable cost bracket

is either too limited in fidelity, range of performance, or reliability

to permit full exploitation of the flight simulator concept. It is



believed that the use of digital computation and microprogramming in

the ILLIMAC will resolve many of the aforementioned problems.

Among the different features of the ILLIMAC Project are:

1. Solving flight and radio aids problems in six degree of

freedom.

2. A Central dedicated arithmetic unit which performs the

major arithmetic computations in the flight and radio

problems.

3. Several satellite special purpose processors which remove

the major load from the central processor.

4. Expandability so as to allow ILLIMAC to simulate fuel

depletion, control loading, motion problems, flight ac-

cessories and other functions by adding other satellite

processors.

5. Microprogramability. All programmed instructions for the

computations which are common to all flight simulators

are preprogrammed in ROMs. Functions which identify par-

ticular aircraft characteristics or NAV/COM and locations

are programmed using RAMs or PROMs.

6. Three data communication links. The first link is the

data transmission system between the ILLIMAC and the in-

structor's console. The second link is the data transmis-

sion system to the visual display generation equipment.

The third link is the data transmission of a common audio

system where multiple audio systems can be channeled so



that each channel may be independently selected by tuning

a simulated aircraft type receiver.

7. Radio interchangability. The system provides for rear-

rangement of the various radios without reprogramming the

computer.

Figure 1.1 shows a diagram of the general approach to digital

flight simulation.

1 .2 Radio Aids Coverage

ILLIMAC is designed to cover up to 600,000 square miles. Al-

though it does not have the storage capacity to store radio facilities

for this large area, it does offer the ability to program radio stations

over a path 200 miles wide from Lost Angeles to New York (Figure 1.2).

This capacity permits the simulation of long cross-country jet aircraft

flights at high altitudes. Since the mission is a high altitude flight

programmed to land at a specific airport, the PROM memory system contains

only the V0R-DME stations necessary for this specific training exercise.

When the training mission occurs in a local area, all facili-

ties may be programmed. In this case, the coverage will be 60,000 square

miles. The user of the equipment may change from one type of program to

another by having a spare memory card which has been preprogrammed for

either application.

1.3 The Problems

The aim of this study is to investigate various types of
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DESIGNED FOR 256 FACILITIES WITH TOTAL PROGRAMABLE

AREA INCLUDING CONTINENTAL UNITED STATES 5

200 Ml

TYPICAL AREA FOR JET TRAINING FLIGHT FROM LOS ANGELES

TO NEW YORK

TYPICAL AREA FOR TRAINING FLIGHT FOR STANDARD

AVIATION TRAINER AIRCRAFT

Fig. 1.2 Radio Navigation Aids Coverage



arithmetic processors for use in a real time environment where high ac-

curacy and resolution are required for values of the elementary trans-

cendental functions such as the many trigonometric relationships in-

volved in the navigation equations of aircraft simulation. This arith-

metic unit would be one part of the ILLIMAC described above.

Listed below are problem areas which have historically con-

sumed a large amount of flight simulator digital computer time and

memory:

1. Arbitrary function generation of 1, 2 and 3 variables

using fixed and/or variable breakpoints.

2. Algorithms for the computation of standard trigonometric

and inverse trigonometric functions.

3. 3x3 matrix coordinate transformations.

4. Solutions of the basic equations of motion to provide

velocities and rotation angles. Use of quaternion/direc-

tion cosine techniques to resolve the gimbal lock problem.

5. Integration techniques satisfying the short term and long

term dynamic problems encountered in aircraft simulation.

6. The RMA (/x
2

+ y
2

+ z) problem.

The arithmetic unit must be able to multiply, divide and solve

all or a large number of the aforementioned problems. Two main ap-

proaches have been considered:

1. Coordinate Rotation Methods developed by J. Voider, B. G.

DeLugish, T. C. Chen and J. S. Walther.

2. Methods based on function approximation employing techni-

ques common to numerical analysis and relying on algorithms



using multiplication as the basic operator. Recent ad-

vances in LSI technology allow the use of fast and rela-

tively inexpensive monolithic multipliers.

These two methods have advantages in:

speed

cost, and

uniformity in the various algorithms (use of a fast

multiplier).

We believe that the second approach is more flexible and al-

lows for more efficient use of the large scale memories available today.

For general purpose processors, where the precision required does not

exceed 32 bits, this second method can be much faster than the coordi-

nate rotation technique. However the first method lends itself more

naturally to low speed, high accuracy processors.

A striking feature in both techniques is the similarity of

the different function routines. That is, a common microprogram control

subroutine and common processor may be used in the different modes of

operation. This represents an economy in the total amount of hardware

required. Both techniques are useful to the designer of small and rela-

tively powerful machines. The main difference is that the numerical

analysis approach can be yery fast because it does not operate in a

digit by digit manner. The operations are performed using an n x n bit

parallel multiplier resulting in essentially a hardwired implementation

of the function approximation algorithms. This second method is the

preferred one with the recent introduction of 4 x 2 and 4x4 monolithic



array multipliers. The basic building block for numerical computa-

tions need no longer be the 4 bit adder or ALU today. Rather, fast

multipliers {yery expensive only two years ago) may be used for imple-

menting complex routines. This technique lends itself naturally to

the arbitrary function generation problem and all interpolation problems

in general. Moreover, this leads to an interesting question for the

designer: How to adapt the well developed numerical analysis methods

to the available LSI technology in building a special purpose numerical

processor. Aviation, and simulation in general, illustrates well how

cost can be drastically reduced by using special purpose hardware,

removing most of the computational burden from the software design.

The coordinate rotation technique will be explained in detail

in Section 2. An 8-bit unit, implementing the trigonometric mode has

been built. In addition, an n bit unit implementing trigonometric,

hyperbolic and linear modes has been simulated.

A theoretical study of the most efficient use of numerical al-

gorithms is examined in Section 3. Simulation and realization of these

methods is left for further study.



2. ANALYSIS OF DIGIT-BY-DIGIT METHODS

2.1 Comparison of the Voider; De Lugish; Cantor, Estrin and Turn;
Walter and Chen Approaches to the Coordinate Rotations Methods

D. Cantor, G. Estrin and R. Turn [CAN70] propose a sequential

table look-up algorithm for calculating lnx and e
x

. The main feature

of this algorithm is choosing the multipliers having short word length

in order to force the operand to the value 1 or to 0. Speed is attained

through the proper choice of short multipliers. The number of precom-

puted constants is 2 for e
x

if x has n bits. Thus 2
" + 2

n ~ con-

stants are needed because of complementary terms needed in the con-

stants. Recoding is not used.

De Lugish [LUG70] has generalized the Cordic principle deve-

loped by Voider in 1959, by evaluating functions using redundant numbers

of radix two. Chen [CHE72] applied the method to nonredundant numbers,

using a Taylor series to approximate the lower half of the number being

computed.

De Lugish' s method, like Walther's, tests a variable whose

value determines the precision of the approximation and the sign of the

correction to be made to the current value. He showed that by using

constants of the form a. = 1 + S. 2~ 1_
where S. can take the values

l l l

{-1, ,+1} he could obtain a better shifting average. The problems in

the implementation for different functions resides in:

— The lack of a common hardware topology. Many different

paths must be provided for each function if several func-

tions are to be implemented.
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-- The initialization process is neither simple nor uniform

for all the algorithms.

-- The precision is computed assuming that the adders have

infinite lengths.

For L bits of accuracy, Walther points out that (L + log^L) bits of

storage are required. This remark holds for De Lugish's algorithms as

well. The maximum computation time for both De Lugish's and Walther'

s

methods is on the order of n for n bits accuracy. The number of stored

constants for De Lugish's and Walther' s method is the same. However

Walther (by generalizing Voider' s equations) uses the same basic method

for initializing several variables and one of them is forced to 0. One

of the great advantages of this method is that only one relationship

is required for all functions, using only 2 sets of stored constants.

Another inconvenience that is found in some of De Lugish's

algorithms is the necessity of changing recursion relations in the

middle of a computation (e.g., cosine and sine) making the control more

complex than in Walther' s method.

2.2 The Principle of Operation

The basic algorithm was first proposed by Voider (Coordinate

Rotation Digital Computer) for use in trigonometric relations found in

flight simulation. It was generalized by J. S. Walther to the hyper-

bolic mode. The convergence properties will be discussed in detail

in the following section. In this section the iteration equations will

be briefly reviewed. The generalization introduced by Walther makes use

of a parameter m in a coordinate system in which the radius R and angle
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A of the vector P = (x,y) are defined as:

R = (x
2

+ my
2

)

1/2

-1/2 .
-1, 1/2 yx

A = m tan (m ~)
A

The curves corresponding to solutions of the equation

R = constant = C
Q

are: a circle of radius Cq , a line parrallel to the y-axis with equation

X = C« , and a hyperbola for m = 1 , m = and m = -1 respectively.

Let a new vector P.,, = (x.^,, y..,) be obtained from P. =
l+l l+l •'i+V i

(x-, y.) according to

X.
+1

= X, +W
i

6
i

y1+1 y, - x.«..

The angle and radius of the new vector in terms of the old one

are given by:

A.., = A. - a.
l + l i l

R.^, = R. * K.
l+l l i

where

-1/2 . -l r 1/2 j -,

a. - m tan [m o.J

K. = [1 + m6
2
]
1/2

l l
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After n Iterations:

n-1

A = A - 7 a. = A -a
n o .L

Q
i o

n-1

R = R * n K. = R *K
n o

i=Q
i o

Solving for x and y3
n -'n

= n K. {x cos(am
1/2

) + y m
1/2

sin(am
1/2

)}
n

i=Q
10 - -o

y
n

=
.

n K
i

{y
o

cos (
aml/2

)
" x m_1/2 sin (

aml/2 )>

Z accumulates the angle variations:
n

Z = z + a.
n o

If A is forced to zero: y =

If z is forced to zero: z =
n

m = 1 , m = 0, m = 1 correspond to the trigonometric, linear,

and hyperbolic mode.

In the case where 6. is chosen to be of the form 2 , the multi-
l

plications by 6- are merely right shifts.

By proper choice of the initial values for x , y , and z ,

solutions for y/x, sinz, cosz, tan" y, sinhz, coshz and tan y may be

obtained. The square root can be computed by using

*^w = (x -y ) where x = w + 1/4

and y = w - 1/4

In the hyperbolic mode one can obtain the logarithm:
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lnw = 2 tanh~ (y/x) where x = w + 1

and y = w - 1

.

2.3 Convergence and Domains of Operation

By convergence we mean that either the Y register or the A

register converges to during the iterative sequence. This is equiva-

lent to nulling the contents of the angle register by adding to and sub-

tracting from it a series of predetermined constants denoted by a..

To be resolved are:

1. Convergence conditions: What are the restrictions on the

constants a.?
i

2. Convergence domain: How large may the initial angle be

and still guarantee convergence to zero?

The primary proof is in [WAL 71]. The A register contains

successive values A., A.
+
,, . . ., given by:

A.
+1

= A. ± a. a. > (2.1)

where |A..,| = |A.| - a. (A. decreases in magnitude).
1 i+l ' ' l ' ii a

'

We wish to guarantee that after n steps, the final angle is

sufficiently close to 0. That is its absolute value will be less than

a in the worst case,
n

The worst case occurs when the value of A becomes zero and we

add (or subtract) the largest constant during the next step (Figure 2.1)

Thus, we wish to guarantee that:
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OC ) LAST STEP
n+1

Figure 2.1 Nulling of the Quantity A.
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°i
" <Vl

+
• • •

+ a
n> * °n

(2 - 2)

The domain of convergence is

|A
|

< I a. + a (2.3)
1

1=1
n n

for n steps (n angles a,, . . ., a )

Theorem : Given any (positive or negative) A, convergence is

guaranteed if (2.1), (2.2) and 2.3) hold.

To prove this we must establish that

n

|A.
|

- I a. < a
n

(Property P(n,i))

which can be done using double induction (i.e., on two variables)

(Figure 2.2)

a. The statement is true for (n, 1) because we choose

n

|A,
|

- I a. < a
1

j=l J

by hypothesis (domain of convergence). Now if P(n,l), we must show

P(n+l,l). For the same reason

n+1

I A, I
- 7 a . < a .

,

'
]

'

j=l J n+1

by choice of the domain of convergence for the initial angle A,.

b. Now consider P(n,i) => P(n,i+1).

That is, if

|A
|

< I a. + a (2.4)
i

j=1 J n



Given a property J (i,n)P(i,n 16

(1.1)
* I

Jl.n).

-(i.n+1)

if

ftl.U 1

P(i.D

>=> ^(1+1.1)

and ^(i.n) :> 7
J
(i,n+l)

this guarantee the property to be true for all (i,n)'s

Figure 2.2 The Double Induction Process
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this implies that

n

|A. .1 I < I a- + a
1+1

'

j=f+1
J n

If we subtract a. from (2.4)
l

n

A.
'

L I
- a. < 7 a. + a - a.

1 i fa n

which can be written

n

l

A
i' " a

i
< a

n
+

I a
i*1 n n

j=i+l J

To be able to use

:

IM -a. |
- |A

1+1 |.

we must also show that

n

J
:

We can use (2.2) which is the constraint on the angles

n

1

1

a -
I

a. < |A. |
- a.

n
j=i+l

n ] n

or

a. - y a. < a
1

j-T+i J n

-a. < |A.| - a.

and

-a -
I a. < -a. by (2.2)

n
j=i+l J n

Thus, we have shown that
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n n

-a - 7 a. < -a. < |A. I - a. < a + T ot.
n j4+1 J i ' i

1

i n
j= ^+1 j

which implies

|
A.. J <a + I

a
j

from (2 - ])

Therefore the convergence is insured for the entire lattice (i,n) and at

the end of the process (i=n) :

I A ., I
< a

1 n+1 ' n

The criterion that

n

a. - y a. < ai. - y a.
1 >T+i JJ-

for the 3 modes is that

n

a. < y a. + a
1

j=i+l J n

must hold for

a. = tan"
1 2" 1

,

a. = tanh 2
l

and

a.,. = 1/2
1

.

Linear Mode

We have

I = 2
" (i+1)

+ 2" (i+2)
+ . . . + 2~ n

+ 2~ n
.
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This sum is equal to 2 and thus satisfies the convergence

criterion.

Trigonometric Mode

tan" ( 1/2
1

) is to be compared with

T = tan 2
v '+...+ tan 2 + tan 2 (2.5)

We have also that tan"
1 2" n

+ tan"
1 2" n

= tan'
1 (2" n+1 /l-2"

2n
). Thus

tan 2 + tan 2 > tan 2

By applying this inequality repeatedly to the last two terms of (2.5)

one gets:

T > tan'
1 2~\ Q.E.D.

Hyperbolic Mode

For the hyperbolic mode we will see that the inequality does

not hold in general but that by repeating some of the a. constants it

can be made to hold.

The sum to reduce is:

H = tanh"
1 2" (i+1) tanh"

1 2" {i+2) + . . . + tanh"
1

Z
n

.

We also have that

tanh"
1

a + tanh"
1

b = tanh"
1

^/ab (2,6)

and thus,
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tanh ' 2
n u + tanh ' 2

U U = tanh ' -
zrrprn

1 + 2
u u

-1 2~ 1
-1 -1

= tanh 9M+1

1

< tann 2

1 + 2
l u

which implies that

tanh-Y 1'

> tan.fY (1+1
> + tanffY<

1+1
> > ttnh-Y (1+1)

+ tanh"
1 2" (i+2)

(2.7)

or

a
i

> a
i+l

+ a
i+l

> a
i+l

+ a
i + 2-

We can here ask ourselves the question: What is the element

x. that must be added to the second member of the inequality in order

to make it an equality?

tanh-V 1
5 tanh-¥ (i+1

> tanh^w" 11 *2
* x.

x, > tanh"
1

2" 1
- tanh"

1
2" (1+1)

- tanlfV* 1 * 1 '

x. > tanh'V 1
- tanh"

i
" """' ' "*""

1 + 2
-(2i+2)

,-i 2" 1

-1 "
1 + 2" (2i+2)

x. I tanh
0~~

{
,

I 2
-(2i+2) }

1 + 2

This becomes:
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.1 2
"(31+2)

X
i

" Unh
1

_ 3x 2
-(2i+2) •

We can choose the quantity

x. = tanh"
1

(2"
(3i+2)

x 2) = a
3i+1

to be greater than

since

i
2
-(3i+2)

tanh [ -(2i+2) ]

1 - 3x 2
U1 L)

1 >1.
1 - 3x 2^V
We have then:

a
i

< a
i+l

+ Vl + a
3i+l

(2 ' 8)

after adding x. = ot~«
+

, to the second member of the inequality (2.7).

Writing (2.8) for i+1 , i+2, . . ., 3i-2,

Vl < a
i+2

+ a
i+2

+ a
3i+4

a
i+2

< a
i+3

+ a
i+3

+ a
3i+7

a
3i-2

< a
3i-l

+ a
3i-l

+ a
3(3i-2)+T

and adding, one obtains:

3i-2
a

i

< a
i+l

+ a
i+2

+
• • •

+ a
3i-l

+ a
3i

+
.\.

a
3j+l
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By applying inequality (2.7) successively this reduces

3i 3i-4

i

<

k=|+1
a
k

+ X a
3j+l

+ a
3(3i-3)+l

+ a
3(3i-2)+l

a

to

3i 3i-4

1
k=i+l

k
j=i

3j ] 3(3i-3)+l 3(3i-3)+l

and finally to:

3i 3i-4

a
i

<
k=^ a

k
+

i. a
3j + l

+ a
3(3i-3)

*

We repeat this reduction by writing the last inequality in the form:

3i 31-5

a
i

<

k=
l
+1

a
k

+ 1 a
3j+l

+ a
3(3i-4)+l

+ a
3(3i-3)

Using the inequality ot
3(3i_3)

< a
3(3i-4)+i»

3i 3i-5
a

i

<

k= \+]

a
k

+
.^

a
3j+l

+ a
3(3i-4) + l

+ a
3(3i-4)+l '

The final inequality obtained is:

3i 31+1

a
i

<

k=
l
+1

a
k

+ a
3i+l

+ a
3i+l

=

J1+1

a
k

+ a
3i+l

For the hyperbolic process, the significance of the last in-

equality is that, starting from cu we have:

a, < ou + ou + a. + a. .

Starting from a.:

a
4

< a
5

+ a
6

+ . . . + a
]2

+ 0^3 + a
]3
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Starting from a,-,:

a
13

K a
13

+ a
14

+
•

' '

+ a
40

+ a
40 •

Th us, depending on the precision desired the quantities {a^, a, 3> a.^,

a,
?
,» . • • , a., a~.

+
,} will have to be added twice (or subtracted twice)

to insure convergence.

2.4 Precision for Radix 2

The accuracy of these algorithms is limited by the finite

length of the registers and adders. An n-bit arithmetic unit is used to

perform all of the operations and the following discussion examines the

value of the worst case error after n steps of computation. Let us sup-

pose that we have an n-bit adder and an n-bit register for storage of

intermediate results.

For the shifting operation we have chosen 8 bit barrel shifters

2
and have tried to minimize the cost by using (n )/8 barrel shifters

2
rather than the 2((n )/8) that would be required in order to retain the

shifted bits. This truncation will have some effect on the accuracy

(see Figure 2.3).

In the following, the CORDIC equations below will be applied n

times in sequence.

Vi x
i

+ m
2_i

h

Vi Y
i

- 2_i

h

The worst case error will occur when all of the shifted bits are
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1

= l - 2" 1

-1 -2 -2
+2 ' + 2 * = 1 - 2

*

+2" 1
+ . . . + 2" n

= 1 - 2" n

E I (1 - 2" 1

)
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one's and the successive operations performed are the same (n successive

additions or subtractions). If we assign a weight of 2 to the least

significant bit the successive errors are (Figure 2.4):

First step 0=0
Second step

Third step

n
th

step

The sum of these errors is:

n

I
1=1

E = n - (1 - 2" n
)

E = n - 1 + 2" n
< n

and this will consequently make the log ^(n) least significant bits of

the result wrong. Thus, a full n-bits accuracy will require n + log
?
n

bits of storage. For n = 16, the maximum error will be

n - 1 + 2" n
= 15 + 2" 16

= 15

If we use an additional 4 bit ALU and 2 barrel shifters so

that the four most significant bits of the n bits lost while shifting

are retained, the errors will be (see Figure 2.5)

Sixth step 2'
5

= 2" 4 (1-2" 1

)

Seventh step 2"
5

+ 2" 6 = 2~ 4 (l-2~
2

)

n
th

step 2
-5

+ 2' 6
+ . . . + 2" n

= 2" 4
(l-2~

n+4
)

and their sum is:
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STEP

BITS LOST
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ERROR

* 2-'+2~2

* 2-' + 2-
2 -2''

2
J
+ 2-a +- 2-n

Figure 2.4 Accumulation of Errors in the Shifting Process

BITS LOST

N

AWED UURIifi THE

ALG0RITH1

Figure 2.5 Accumulation of Errors with Guard Bits

ERROR TEK1S

2- 5
+ 2"V.. 2-*
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n-4
E = 2~ 4

I (1 - 2" 1

)
1

i=l

E
1

2" 4
(n-4) - 2" 4

(1 - 2" n+4
)

= 2" 4
(n-3) + 2' n

<
2" 4

(n-2)

and thus the error is considerably diminished.

In the n = 16 case:

-4
E, < 2 (16 - 2) = 14/16 < 1 and thus 16 bits of accuracy can

be obtained by using one additional 4 bit ALU and 2 barrel shifters

(Figure 2.6).

2.5 Computation of the Constants Stored in the ROM

There are three types of constants involved in the CORDIC

algorithms:

a. L. = 2' 1

l

b. T. = tan"
1 2' 1

c. H. = tanh"
1 2' 1

l

a. The constants used in the linear mode can be generated

by using a serial-in, parallel -out shift register.

b. The arctangent constants have been computed in both

decimal and binary. The binary number represents angles

(Table 2.1). The following conventions are used:

it is represented by 10.0 . . .

j 01.0 ...

J 00.1 . . .

and so on.
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tan"
1

(1/2)
1-1

Decimal Binary

Rounded to 25 places

1 45.0000000000 '

00,
2 26.5650511771 00.
3 14.0362434679 00.
4 7.1250163489 00.
5 3.5763343750 00.
6 1.7899106082 00.
7 0.8951737102 00.
8 0.4476141709 00.
9 0.2238105004 00.
10 0.1119056771 00.
11 0.0559528919 00.
12 0.0279764526 00.
13 0.0139882271 00.
14 0.0069941137 00.
15 0.0034970569 00.
16 0.0017485284 00.
17 0.0008742642 00.
18 0.0004371321 00.
19 0.0002185661 00.
20 0.0001092830 00.
21 0.0000546415 00.
22 0.0000273208 00.
23 0.0000136604 00.

1 0000000000000000000000
0100101 11 00100000001 010
001001 1 11 1 101 1001 1 10000
00010100010001000100011
00001 01 0001 01 100001 1010
00000101000101 110101 1 11

000000101000101 1 1 101 100
0000000101000101 1 1 11000
00000000101000101 1 1 I 100
OOCOOCCGClOlOCClCil 1110
0000000000101000101 1 1 11

00000000000101000101 1 1

1

000000000000101000101 1

1

0000000000000101000101

1

00000000000000101000101
00000000000000010100010
00000000000000001010001
00000000000000000101000
00000000000000000010100
00000000000000000001010
00000000000000000000101
00000000000000000000010
00000000000000000000001

shifting

Table 2.1

Values of tan"
1

(1/2)
i-1
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It can be seen (Table 2.1) that for i > 8 the successive con-

stants are obtained by shifting.

The Taylor expansion for arctan is

, 3 5 7
•I y y y

tan x = x q
+ ~c

7 ' * '
l

x
l

< 1

If tan" x has n bits resolution, we see that when |x| is less

than 2 ' , the additional terms of the series (x - x . . .), will not

contribute to an n bit precision angle and thus we will have, for

|x| < 2- n/3
,

tan" x = x or if

1 > § , tan"
1 2" 1'

= 2" 1

'

c. The tanh" constants have a similar property and have been

computed in the same way (Table 2.2).

For x > -z tanh" x - x

As seen in the CORDIC equations, the radii of the successive

vectors are modified by multiplicative constants of the form:

T2T
K. = A + m 2 for base 2 algorithms.

me (-1 , 0, +1)

After n steps of the iteration, the magnitude of the rotated

vector has grown by a factor K.

n-1

K = n /l + m 2
dl

n
1-0
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Decimal Binary (rounded 25 places)

1 0.5493061443 00.
2 0.2554128119 00.
3 0.1256572141 00.
4 0.0625815715 00.
5 0.0312601785 00.
6 0.0156262718 00.
7 0.0078126590 00.
8 0.0039062699 00.
9 0.0019531275 00.
10 0.0009765628 00.
li 0.0004882813 00.
12 0.0002441406 00.
13 0.0001220703 00.
14 0.0000610352 00.
15 0.0000305176 00.
16 0.0000152588 00.
17 0.0000076294 00.
18 0.0000038147 00.
19 0.0000019073 00.
20 0.0000009537 00.
21 0.0000004768 00.
22 0.0000002384 00.
23 0.0000001192 00.
24 0.0000000596 00.
25 0.0000000298 00.

10001 100100111110101010
01 00000101 100010101 1 1 1

00100000001010110001010
00010000000001010101 101
000010000000000010101 10
0000010000000000000101

1

000000 1 ooooooooooooooi
00000001 OOOOOOOOOOOOOOI
00000000100000000000001
0000000001 0000000000001
00000000001 000000C0C0C1
00000000000100000000001
00000000000010000000001
00000000000001000000001
00000000000000100000001
00000000000000010000001
00000000000000001000001
00000000000000000100000
00000000000000000010000
OO0OOO0OO0O00O0O00Q1 000
00000000000000000000100
00000000000000000000010
00000000000000000000001
00000000000000000000001
00000000000000000000001

Table 2.2

Values of tanh"
1
(1/2)"

1
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Table 2.3 shows the value in decimal and binary of the scaling

factor K for n up to 24.
n

r

The two scaling factors K, and K , can be stored in one ROM

location if division by K is necessary during a computation.
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Decimal Binary

1.

1 1.

2 1.

3 1.

4 1.

5 1.

6 1.

7 1.

8 1.

9 1.

10 1.

il 1.

12 1.

13 1.

14 1.

15 1.

16 1.

17 1.

18 1.

19 1.

20 1.

21 1.

22 1.

23 1.

24 1.

4142135623730950 01.011010
5811388300841890 01.100101
6298006013006610 01.101000
6424840657522360 01.101001
6456889 157572530 01.101001
6464922787 124770 01.101001
6466932542736420 01.101001
6467435065968990 01.101001
6467560702048760 01.101001
6467592111398200 01.101001
6467599963756150 01.101001
6467601926846920 01.101001
6467602417619690 01.101001
6467602540312890 01.101001
6467602570986180 01.101001
6467602578654500 01.101001
6467602580571570 01.101001
646760258 1050850 01.101001
6467602581170660 01.101001
6467602581200620 01.101001
646760258 1208110 01.101001
646760258 1209980 01.101001
6467602581210440 01.101001
6467602581210560 01.101001
6467602581210590 01.101001

10000010011 1 10100
001 1000101 1000010
01001 1 10101001 11

1

0001 1 1 1001 1 10101

1

0101001011 11 10000
01100000001C0001

1

01 10001 101 101 1001
011001000011 11110
01 10010001 1 101000
01100100100000010
01100100100001001
01 100100100001010
0110010010000101

1

01 10010010000101

1

01 100100100001011
01 10010010000101

1

0110010010000101

1

01 10010010000101

1

01 10010010000101

1

0110010010000101

1

01 10010010000101

1

01 10010010000101

1

0110010010000101

1

01 10010010000101

1

01 100100100001011

Table 2.3

Values of n K. = n [1 + 2
2l

]
1/2

o
n

o
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3. PROCESSOR SIMULATION

3.1 Software Simulation

The CORDIC algorithms have been simulated by implementing the

digital arithmetic unit in software . To avoid the normalization and

rounding inherent in the 360 arithmetic operations
, the algorithms have

been simulated in binary.

The printouts allow the designer to check in a straightforward

manner the digital prototype machine (described in Section 4) by com-

paring the binary outputs to the strings of O's and Ts of the printout.

The program requires the value of m(+l , 0, -1) so as to specify

the trigonometric, linear, of hyperbolic mode. The user specifies whether

the Z or Y register sign is to be tested during the algorithm. The pro-

gram prints out the final values of X, Y, Z, K and K~ .3 mm
The initial values, X and Y , are input by the user.

o o r

Z must be specified in degrees for the trigonometric and hyper-

bolic modes. It is also possible to print out the intermediate values

of the registers in decimal, both decimal and binary, or to print the

final register values directly. N, the precision of the computation, can

also be specified. Figure 3.1 shows the format of the program printout.

The final binary result is then converted back to decimal and

the relative error is computed by using the Call -OS FORTRAN double preci-

sion routines:

Error in % = 100 x
CORDIC Value - True Value

hrror in % iuu x
True Va]ue



Values in Decimal Values in Binary

X„

Zn

<X r

STEP n

X REGISTER : Xn

Xn SHIFTEJ

Z REGISTER Zn

ROM OUTPUT : C< N

35

Next

Operation

Each box represents a number (decimal or binary), result of

step n.

add

\

OPERATIOII FOR TK £&

ITERATION. ( RESULT OBTAINED

AFTER TESTIS Yn OR Zn )

/ /

Yn SHIFTED /

i i /
Y REGISTER : Yn ADD

SUB

Figure 3.1 Format of the Simulation Program Printout
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3.2 Trigonometric Mode

Table A.l of the Appendix lists the output for the trigonometric

mode. It shows:

— The initialization

-- The first 90 degree rotation

-- First step

-- Second step

-- 19th step

of an iteration in the trigonometric mode. The 19th iteration will not

change the outputs X, Y, Z. In the formulas

X
i+1

= X. + 2- 1
Y.

and

the additive terms 2
_1

Y. and 2" 1

Y. will not contribute to the final

20-bit-resolution number for i greater than 18. The first two steps are

the 90 degree rotation and shift.

For the example chosen, the initial vector (X , Y ) has the

value (1/K-j, -1/K-,) so that the final result should be:

* * K
i ^ + <- r/ - *

Y >

_1
-1 "

K
l

Z - Z
Q

+ tan ' (—jL) = Z
Q

- 45°

Figure 3.2 shows the first steps of the algorithm.
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FIRST 90* ROTATION

( IP ROTATION)

1-1

1-2

1-07

0000138147

Figure 3.2 Steps in the Trigonometric Mode
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3.3 Linear Mode

The example of division is used with constants equal to 2 .

Figure 3.3 is a geometric interpretation of the algorithm with Y = -.

3

and X = .6. The result of the division is -.4999961853.
o

Tabulation for the linear mode is given in Table A. 2 of the

Appendix.

3.4 Hyperbolic Mode

The equations,

X + K (X cosh ln + Y sinh Z )
2

Y -* K (Y cosh Z + X sinh Z )
2 o oo o

Z +

are tabulated in Table A. 3 in the Appendix.

The value of K is 0.82978162013 with X = 1/K9 and Y =
2 o 2 o

and the result is:

X = cosh Z

Y = sinh 1
o

Z =

Iterations 4 and 13 have been repeated twice to insure conver-

gence as shown in a previous section. One can see that the precision of

these algorithms is not uniform. The simulations were done with no
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SHIFT = 1
G = X

Figure 3.3 Geometric Interpretation for Linear Mode
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initial normalization and thus the relative precision has some variations

which are a function of the initial values, Xq, Y
q

and Z
Q

. In analyzing

the total precision, one must account for the fact that values are

represented in binary with finite length registers.

The next section gives an indication of the behavior of the

error for a typical computation of the slant range at various bearing

angles.

3.5 Precision of Results without Initial Normalization

Figure 3.4 represents the relative error for the X and Z

registers when the following formulas are computed in binary:

X + K
l V + Y

o"

Y ->

7 7 4. "I
Y

Z + Zn + tan y—
u A

Q

Several angles ranging from 90 have been chosen. X
n

and Y~

have values of A cos A~ and X sin A~; A
Q

being the chosen bearing angle

and A the slant range. The percent error is plotted as a function of the

slant range for various bearings. The curves correspond to 20 significant

digits. The error is computed in double precision.
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4. THE 8-BIT PROTOTYPE OF A CORDIC ARITHMETIC UNIT

4.1 Hardware Realization
2

The prototypp, constructed with T L technology is composed of:

i) a microprogrammed control unit

ii) the X, Y, and Z sections of the arithmetic unit including

the 8-bit scalers. The use of these particular 8-bit

position scalers presented some problems in the 2's-

complement notation. These are explored in Section 4.3.

In Section 4.4 the design and operation of the prototype is

discussed in detail

.

4.2 Control of the Arithmetic Unit

The term "microprogramming" was introduced two decades ago by

M. V. Wilkes. His intent was to offer a more systematic approach to

control design in digital computers. Within the last few years greater

understanding of the digital process combined with improved manufacturing

technology rendering highspeed changeable control economically feasible

has led to a resurgence of interest in computers whose controls may be

modified during use.

The working nucleus of a conventional digital computer is the

central processing unit or CPU and its associated main storage unit. Data

flows from several parts of the computer to and from the CPU and/or memory

so that operations can be performed on it (addition/subtraction and

other possible elementary operations). During the basic time slot or

cycle an instruction is performed and some gates are opened, counters are

incremented, and so on by control signals . Depending on the present state,

the machine will execute another instruction (next state).
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In the conceptually simplest possible organization (Figure 4.1),

the storage part of the control section would contain a storage element

corresponding to each control line connected directly to its control

terminal. This usually requires too many control lines (100 is a common

number) and the usual procedure is to examine the control signals in

groups that are logically mutually exclusive to reduce the length of the

microword.

It is also necessary to establish the microprogram address (con-

trol state) that is to succeed the current one (Figure 4.1). A common

technique is to construct the next address from the current address by

providing in the microword format a field that controls the modification

of the current address as a function of the current state. This provides

the possibility of conditional jumps and GOTO-like micro-instructions.

Because of the decreasing cost of ROMS and the flexibility of

microprogramming these techniques are becoming more and more popular for

the control design of computers. Studies have shown that above a certain

size the cost of microprogramming is less expensive than the cost of

control by standard techniques.

Mode of Operation of the Control

The microprogram will consist of a series of micro-routines,

one for each different machine instruction defined by the user, and a

master macro-routine to effect branching to the appropriate routine for

the current instruction. Each instruction in the machine program can be

thought of as a macro-call with an operation code making the call, and

the remainder of the instruction supplying the parameters.



44

a

3

2
a

sz r

:x 1

1

fc5

1

H
1

1

1

w §

r "i

i i

•r—

c

en
c

1-

cn
o
s-

Q.
O
S-

o

s-

0)
c
<ll

CD

s-

en



45

There is a need for a ROM decoding table which has as many

entries as there are possible values of the operation code for each

processor. It is also necessary to have a way of doing a TEST and

BRANCH operation as well as a RETURN from a subroutine.

Structure of the Basic Microprogrammable Unit

Although a yery general microprogrammable unit has been des-

cribed its implementation is simple and requires only a small amount of

hardware. BRANCH or CONDITIONAL JUMP instructions are performed to imple-

ment any algorithm represented as a flow table. A small microprogram

control allowing the equivalent of a GO TO instruction, or a JUMP TO SUB-

ROUTINE (conditionally or unconditionally), will be implemented. This

likewise uses a small amount of hardware (Figure 4.2).

The sequence of instructions to be executed is implemented as

a flow chart rather than as a detailed microprogram subject to modifica-

tions. Thus, the microprogram part can be easily implemented during the

microprogramming phase when all the control lines are known and well

defined.

The organization of the control card is shown in Figure 4.2. It

is comprised of: a RAM or a ROM (with no more than 16 words) where the

microsteps are stored and a micro-instruction address register which has

four different fields - the test, true address, false address and the micro-

instruction. Many other configurations are possible, of course.

The test field represents a three bit code yielding one of eight

possible tests. The tests are selected by an 8 x 1 multiplexer addressed

by the test field. A memory location can be selected from among four

possible sources: the true link, the false link, the stack, and a set of
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switches for manual addressing (to examine the contents of a given memory

location). The stack is used to save the value of the current-address-

plus-one whenever the program jumps to a subroutine. The current address

in incremented by one by means of an adder. To simulate a stack, a RAM

and an UP-DOWN counter are used. The two control lines, "Push" and "Pop",

are part of the micro-instruction. This configuration allows asynchronous

control of the input/output flow between the machine and the computer.

The details of the clock sequences are shown in Figure 4.3 for

a positive or negative edge triggered control line. The delay, , will be

necessary to allow the control bits A and B to be latched into the micro-

instruction register before the occurrence of the clock edge if edge

triggered devices are used. The JUMP TO SUBROUTINE will issue a signal

on the PUSH control line while the POP is (Figure 4.3). The return

signal will POP the preceding address from the stack and cause the data

selector switch to get the next address from the stack.

4.3 The Use of Scalers for 2
' s Complement Shifting

The CORDIC algorithms require shifting by positions varying

from 1 to n for a typical n-step algorithm. However an eight-bit position

scaler which performs only end-off shifts was used. Figure 4.4 shows the

diagram and truth table of the scaler. This basic 8-bit building block

can be used for any shift function.

It is possible to use a simple shift register which shifts any

number of places right or left. However, an 8-bit position scaler package

takes no more space than an 8-bit parallel-in, parallel-out shift register.

In addition, the scaler is faster and has simpler control.
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Example with a shift of 3 (S
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=110)

Truth table :

INHIBIT
ENABLE
1*2 *0 s

1 h °0 °1 °2 °3 °4 °6 °6 °7

'o '1 '2 '3 >4 '5 *6 '7

1
'l '2 '3 '4 '5 !

6 '7

1 '2 T
3

T
4

T
5

T
6

T
7

1 1 '3 T
4

T
5

T
6

T
7

1 '4 T
S

T
6 h 1

1 1 T
5

T
6 h 1

1 1 T
6

T
7

• 1 1

1 X

1

X

1

X

1

X

T
7

1

1

1

1

1

X X X X 1 1 1

Figure 4.4 Scaler and Truth Table
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Scalers belong to the more general class of uniform shift

networks. This includes

. Scalers or shift circuits for end-off shifting

. Rotate circuits for end-around shifting

. Shift and rotate circuits or "barrel switches" which are

capable of both end-off and end-around operation.

The outputs of the scaler used are open collector to allow for

array expansion.

However, for 2's complement numbers, there is the problem of sign propagation

for right-shifting. A number in 2's complement form with the left most bit

being the sign, must have its left most bits filled in with the sign bit

when divided by 2
n

(Figure 4.5).

This scaler replaces the left most bits by l's independently of the input

binary number. Some kind of connection is therefore needed in order to

insure proper sign propagation.
2

The number of units required for an n-bit scaler is (g) (Figure 4.5)

One approach implementable for small scalers, is to use (g)

extra 8-bit scalers having the sign bit of the shifted number as inputs.

The various cases are shown in Figure 4.5.

For all possible cases it is easy to see that if the outputs

of the B scaler are complemented when the sign bit is 1 and unchanged when

the sign bit is 0, and if these outputs are wire ANDed with those of the

A scaler, one will have the required correction (Figure 4.6).

However, this solution is not very economical for large n.

2
Another approach makes use of a 32 x 8 T L ROM. This solution

avoids the duplication of (g) barrel shifters whose only function is to

propagate the sign-bit (Figure 4.7). When the sign bit is the ROM sees
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Positive 2's complement number:
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—
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Figure 4.5 Sign Propagation with the 8-Bit Scaler
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the address 000 which is loaded with l's only. When the sign bit is a 1

the output of the ROM address is of the form: 00 .. 0111, where the

number of zeros is equal to the value of the binary address.

For a 32 position scaler one would need four ROMs plus two AND-gates for

the address. This is a substantially smaller number of packages than

required by the previous solution. The access time of the currently avail-

able T L ROMS is one the order of 30 to 60 ns; compatible with the delay

of the scalers.

4.4 An 8-bit Prototype CQRDIC

The organization is sketched in Figure 4.8.

We can distinguish:

- The input mutliplexers

- The C0RDIC arithmetic unit

- The output registers

The cross connection implementing the "cross addition/substraction" is shown.

The X, Y and A registers can be initialized independently by means of

switches. The counters are used to address the scalers and the ROM con-

taining the constants.

The microprogram is stored in a RAM: A set of switches allows debugging

and changing the micro instructions in order to implement any of several

algorithms. The following labels have been chosen:

- Input multiplexers: MPY, MPX, MPA

- Counters: CTSH (Count/Shift, for addressing the scalers)

CTA (for addressing the ROM storing the ATR

constants)

- Input registers: IRY, IRX, IRA

- ROM storing the constants: ROMA
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- The adder-substracters: A/SY, A/SX, A/SA

- The output registers: ORY, ORX, ORA

Microinstruction Format

56

I CORDIC NEXT ADDRESS

I: Input gating signals

0: Output gating signals

CORDIC: A/S, Counters, and ROM

NEXT ADDRESS: The binary value of the jump address or next

address. This format is convenient and flexible for this

prototype of the AU.

Figure 4.9 shows the diagram of the control.

The execute signal opens gates and takes into account the delay in

performing an instruction. The fetch signal latches the new address into

the instruction address register and issues the next instruction to the

input of the microinstruction register.

Control -Microinstruction Address Register

Figure 4.10 shows the microinstruction address register. The

dual 4-line to 1 line Data Selector/Multiplexers allow the selection of

the address for the RAM either from manual switches or from the next-

address portion of the microinstruction. The singleshot is used to

generate the fetch signal, which can be initiated manually also.
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RIY<- -XI

RIX<- Yl

RIA <- +90°

Yes

RIY <- +X1

RIX<- -Yl

RIA <- -90°

1

WW21
" 2

V
i+1

=Y 1+X./2
i -2

X
i+l

=X1+Y
l
./2

1 - 2 VrVY 2i ~ 2

RIA<- RIA +OC.
l

RIA<- RIA -OC.
l

Fig. 4.9 Control Flowchart (Trigonometric Mode)
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Control -Microinstruction Register

Figure 4.11 shows the microinstruction register. It is an

edge-trigerred latch since some input signals return to their initial

value and some remain at a new value.

In other words, some control signals are pulses and some are

constant. The execute pulse is delayed and used to generate the pulse

signals whereas the level signals come directly from the MIR. The single

shot generates the "execute" pulse. The inputs to the MIR come from a

32 x 20 bit RAM.

Input Multiplexers

Refer to Figure 4.12. Four mutliplexersare used to steer the

values X , Y , and A or to initialize the registers X, Y and A depending

on the mode. Switches are used for initialization. The select inputs

are labelled A and B; the strobe, G; the data inputs CO, CI, C2, C3 and

the outputs Y. The strobe, G, can be used to clear RIY, RIX and RIA,

since, if G is a 1, the output of Y is low no matter what the inputs may

be.

Outputs

Figure 4.1 3 shows the three 8-bit output registers and the

strobe signals GOX, GOY, and GOA.

CORDIC

Figures 4.14, 4.15, and 4.16 show the CORDIC unit itself. One

can distinguish
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. the input register stage,

. the barrel switch stage, and

. the adder/subtracter stage.

In Figure 4. 16, the "angle" portion of the arithmetic unit, shows that

the inputs to the adder/subs tracter are taken directly from the ROM, the

scalers being unnecessary for the A portion of CORDIC.

Speed

The microprogram is shown in Table 4.1 and requires ten steps.

Due to the limitation of the stored constant ROM used, the minimum step

duration obtained is -
p Mh z

= 850 ns. The ten steps required by the

algorithms thus take 8.5 us.
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5. METHODS BASED ON FUNCTION APPROXIMATION

5.1 High Speed Division Using High Speed Multipliers

There exist several algorithms in the literature dealing with

the computation of the reciprocal, -, of a normalized number, x. Wallace

[WAL64] first developed an iterative division scheme by making use of a

fast mutltiplier. The IBM/360 floating point execution unit also makes

use of a fast multiplier to perform division. It is an iterative process

where, on each iteration, a factor, R. , multiplies both numerator and

denominator so that the resultant denominator converges quadratically

toward one and the resultant numerator converges quadratically toward the

desired quotient:

fj
x

R^
x

R7
X

4
X '•• X R^ NR R

1

••' R
n = Qu°tient

Ferrari [FER71], Ling [|_lN71]and Stefanelli [STE74] have also

proposed various multiplicative schemes for computing the reciprocal of

a number. An overview of these algorithms is given in Appendix A.

4

Stefanelli describes an inversion algorithm based on the Taylor series. It

makes extensive use of read-only memories and a set of dedicated, non-cas-

caded mutlipliers.

This technique is very fast because it is entirely parallel, but there

are some inconveniences:

. the method uses dedicated multipliers to implement the

division algorithm and we believe that such algorithms should

be designed around an n x n multiplier that can be used for

multiplication, as well as other function generation.
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. the Taylor polynomial produces very poor behavior with

respect to error and it is possible to use other approximating

polynomials which yield better error control.

. It is expensive to use algorithms based on series approxi-

mations and ROM lookup to implement a totally parallel

divider for a precision of more than 32 to 34 bits. The

precision can be increased, however, by more efficient use of

the ROMs than that proposed by Steffanelli [STE# ] (See

Appendix A. 5)

As discussed later, other approximating schemes taken from

numerical analysis lead to better error behavior than that obtained from

a Taylor polynomial expansion.

5.2 Division and Function Generation Using Optimum First Order Polynomial
Interpolation with Selected Abscissas

We now investigate the precision and the possibility of implement-

ing function approximation by applying a technique known as optimum poly-

nomial interpolation. The results are general and apply to any continuous

function, f(x), that must be approximated between selected points x
Q

, x-,.

The equations are easily derived for any arbitrary function f(x), although

they are not optimal in the Tchebychev sense (minimax approximation).

Remez' algorithm and Tchebychev polynomial approximations are two other

techniques available. The following describes the notation used throughout

the remaining paragraphs.

The given number x has the following format

x
o

0.1

3^7: T2~ 13

n bits
o



x = x + r 0<r<2°
o —

-n

r = R. 2
°

< R < 1

70

n is the number of bits looked up in a table (10 to 14 seems

to be practical given the present technology).

x is the given number with n bits precision

x represents the n high order bits

r represents the (n-n ) low order bits

— is stored in a ROM (rounded)
o

R represents the number (not necessarily normalized):

o n

.

-n

x-, = x
Q

+ 2 , next interval point

1 x
f(x) is the function to be approximated (— , e , log x . .

.

)

A

Optimum Polynomial Interpolation with Selected Abscissas

If a function f(x) is approximated by the interpolating polynomial

p (x) of degree n which agrees with f(x) at n + 1 points x0> x,, ... x we

have

f
(n+l)m

f(x) - p
n
(x) = ir(x)

f

in+] )y
= E(x,0

where tt(x) = (x-x
Q
)(x-x-| ) ... (x-x )
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if x
Q

< x
1

< ... < x
p

and £ e [ x
Q

, x
p

]

The interval must be reduced to the interval [-1, 1] by an

appropriate change of variables. The term f* ' (£) depends on x and

on the abscissas x
Q

, x, ... x . One can chose to minimize |tt(x)|

over [-1, +1] rather than minimizing |f(x) - p (x)|. If f^
n

' (?)

does not vary too much in the interval, one would obtain a nearly "best

approximating" polynomial. This technique can be used to find an approxi

mation to all functions f(x) having continuous derivatives in [-1, +1],

Thus we will minimize the quantity:

+1
r

I
= ,2

w(x) |>(x)] dx

-1

Where w(x) is a prescribed weighing function which is non-

negative in [-1, +1]. This will minimize the error due to the factor tt(x)

It is known that

a) If w(x) = l,the n + 1 roots of tt(x) that minimize I are

the zeros of p + -i(x),
the (n+l)

s
Legendre Polynomial.

b) If w(x) = , , the n + 1 abscissas are the zeros
/lT^2

°f T
n+ i( x )> tne (n+ l) Chebyshev polynomial and are given

by
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x. = cos (£i±j-
. |) i = 0, 1, ... n

It follows that tt(x) = 2~ n
T
n+]

(x)

(x,.i^LiMii£p w
(2n+2)l

n+l

c) If w(x) = (l-x)
a

(1+x) 3 a > -1 > -1 the abscissas

are the zeros of the Jacobi Polynomial.

Next, we will study in more detail the Legendre and Chebyschev

polynomials for division and will describe a hardware implementation for

various precision.

Range Transformations

The formulas used generally assume that the variable x takes

values in the interval [-1, l]. The range transformations are derived as

follows: We have x = x
Q

+ r (notation as above) with x ranging between x
Q

and X-, , the mapping into [-1, +1] leads to

x = 2x _ VX

x
l"

x x
l"

x

x(x,-xn ) x,+x n
That is, x = i—— + -h^-

Legendre and Tchebychev Interpolation of First Order

1 2
The values x

Q
and x-, are the roots of P

2
(x) = 2"(3x -1) for a

p
Legendre approximation of f(x) and T

2
(x) = 2x -1 for the Tchebychev case.
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FT Jn

The roots, in either case, are x
Q

= -x, = a = j f° r Legendre and j for

Tchebychev. We have for the new abscissas:

Xj-Xq x
!

+x
n

x
i

+x
q

x = "a *—2—
^
—2— = ~a

2
—2

—

-

XT X
0^ Vx

h
(X

1

+X }

x
1

= a (—2—)
+ —2— = a

2
+

The new first order approximation formula then becomes:

f(x'-,)-f(x' )

M x >- f ( xV +
x yx'

°
< X - XV ^J

Comparing it with the previous formula for Legendre interpolation

f(x,)-f(x
n )

M x
>

= f ( x0>
+

xr x

°
(X - X }

It appears that we have lost several advantages from a hardware implement-

ation standpoint:

x - x
Q

was directly represented by the n - n
Q

low order

bits of x.

x-, - x
Q

had the value 2" n

computation of p(x) involved only the multiplication

[f(x-,) - f(x
Q
)] x R

However, equation( 5-l)can be further transformed by the following relation

x'-j - x'
Q

= ah

x - x'
Q

= x - (x
Q

+ | - a|)
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= x - x
Q

- 2-0-a)

= r - |(l-a) = h[R - l(l-a)]

Thus, given R, one can perform the subtraction [with (n-n«) bits

precision] of the constant j (l-oi)«

Complications arise when the multiplier is not a signed number.

It is better to express (5-1) as a function of r = x - x~:

f(x\) - f(x')

Pl
(x) = f(x'

Q
) +

x<i
_ x

,

q

(x-x0+x -x' )

f(x') - f(x' ) f(x' ) - f(x' )

M*) = f(x'n) + J _ v . (X n-X' n ) + J _ w ,

°
x

'l
" x

'o ° ° x
'l

" x

(x-x )

xf(x') - f(x')
h

f(x' ) - f(x' )

= f (X'„) + ±-c °~ (a-1 ) § +
]

-r 80' ah i- / 2 ah

(x-x )

i (ftx'O - f(x' n ))

Pt(x) = f(x'
Q

) + [fCx
1 ^ - f(x' )]

(Sjl) + *— °—R

, (f(x') - f(x' ))

Thus one can store f(x'
Q

) + [fU^) - f(x' )] (g
1

) and — —
in ROMs (or RAMs) and perform the multiplication by R, the n - n

Q
low order

bits of x.

The error for the case f(x) = — is — - p-, ( x) and is tabulated
A A

for

x
Q

= .5 (first interval

)

-11 i/7
and x

Q
= 1 - 2~ (last interval) in the Chebychev case (a= j)
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/J
and the Legendre case (a= ~-) and for two intermediary cases: a = .5 and

a = 1 in Tables 5.1, 5.2 and 5.3. The j case simplifies the hardware

design as to the amount of ROM required and the a = 1 case corresponds to

the Lagrange polynomial for which the formula becomes:

P^x) = f(x'
Q

) + [f(x'.,) - f(x' )]R.

Precision Attainable

1
(x-x' n )(x-x' 1

) ,

where %, takes values between £ = x
Q

and E, = x-,.

The polynomial tt(x) is weighted by a function of x taking values

between —^ and —j. The error is then bounded by

V x
l

E, = max|TT(x)| x

—

j in the interval [x
Q
,x-,].

x

For the Tchebycheff case one finds

( h 2

E = !Zii._L k
2

L
l 4 3

k
'

x

For the first interval: E
]

= h
2

= 2~^o.

k -2n
For the last interval: E, = -^- = 2

Ml
o - 3 and thus



a = 1/2

h - 2" 12

h
2

= 0.0000000596046412

1/x - p^x)
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0. 5000000000000000
0.5000076293945312
0.500015258 789 0625
0. 500022888 1835937
0.500030517 578 1250
0.500038 14 69 726562
0.5000457763671875
0.5000534057617187
0.500061035 15 62 500
0.5 00068 66455078 12
0. 50007 62939453 1 25
0. 5000839233398437
0.50009 15527343750
0.5000991821289062
0.50010681 15234375
0.5001 144409179687
0.5001220703125000
0.5001296997070312
0. 5001373291015625
0.50014495849 609 37
0.5001525878906250
0.5001602172851562
0.5001678466796875
0.5001754760742187
0.500183 105468 7500
0.5001907348632812
0.5001983642578125
0. 5002059936523437
0.5002 13 62304 687 50
0.5002212524414 062
0.5002288818359375
0.50023651 12304687

0. 000000C 393633290
0.0000000749337312
0.0000000614354 136
0. 0000000488683334
0. 0000000372324478
0.0000000265277142
0.0000000167540901
0.00000000791 15330
0.0
•0.00000000698 05515
•0.00000001303 01 638
•0.0000000181488800
•0.00000002233 67422
0.00000002 5593 79 33
0. 0000000279200758
0.000000029315632 6

0.00000002978 05056
0.000000029314 738
0.00000002 79 183 723
0.0000000255914510
0. 0000000223340164
0.0000000181461 1 15

0. 0000000130277789
0.0000000069 790609
0.0
0. 0000000079093607
0. 00000001 67489793
0.0000000265188127
0.000000037218818 7

0. 0000000488489544
0.000000061409 1775
0. 0000000748994453

Table 5.1

Error for the First Order Approximation
for f(x) = 1/x and a = 1/2



a = /2/2

h = 2
-12

1/x - p^x)

77

0. 5000000000000000
0. 500007 629 39453 12

0.500015258 789 0625
0.500022668 1835937
0.500030517578 1250
0.500038 1469726562
0.50004 57 763 67 18 75
0.8000534057617 187
0.50006103515 62500
0.500068 66455078 12

0.50007 62939453 125
0. 5000839233396437
0.50009 15527343 750
0.500099 1821289 062
0.50010681 15234375
0.5001 144409179687
0.5001220703125 000
0.500129 6997070312
0.5001373291015625
0.50014495849 6093 7

0.5001525878906250
0.5001602 1 7285 1562
0.50016784 6679 68 75
0.5001754760742187
0.5001831054 687500
0.5001907348632812
0. 5001983642578125
0. 5002059936523437
0. 5002136230468750
0. 5002212524414062
0. 5002288818359375
0.50023651 12304 687

0. 0000000595755536
0. 000000045 1464 1 04
0. 00000003 1 648 54 7

1

0. 0000000190819212
0.00000000744 64899
0. 0000000032577894
0.000000013 0309 59 2

0. 00000002 18 73 062
0. 000000029 784 14 07
0.00000003 676423 79
0. 0000000428 1 339 59
0. 00000004 79 3165 78
0. 000000052 1 19 065 7

•0. 0000000553756625
0. 00000005770149 7

0. 0000000590965932
0.00000005956101 19

0.000000059 094 79 00
•0.00000005 769 79 700
0. 0000000553705943
0. 0000000521 127055
0.00000004 792434 63
0.0000000428 05559 3

0. 00000003 675 638 70
0.000000029 7768 719
0. 0000000218 6705 66
0.00000001302 698 39
0. 00000000325669 62
0. 0000000074437640
O. 000000019 074354

1

0. 0000000316350315
0. 000000 04 5125 7 53 6

Table 5.2

Error for the First Order Approximation for f(x)

and a = /2/2 (Tchebycheff approximation)

= 1/x



1/x-p^x) 78

0. 5000000000000000
0. 500007 62939453 12

0.500015253 789 062 5

0.500022388 1835937
0.50003051 7578 1250
0.5 00038 14 69726562
0. 500045776367 1875
0. 500053/1057617 187
0.500061 U351562500
0. 500068 6645507ft 12

0. 5000762939453 1 2b
0. 5000839233398437
0. 5 0009 1552 73437 50
0.5000991821289062
0.50010681 15234375
0.5001 144409 179687
0. 5001220703125000
0.5001296997070312
0. 500137329 1 015625
0.5001449 5849 609 37
0.50015258789 06250
0. 5001602 1 72851562
0.5001678466796875
0.5001754760742 187
0. 5 00183 105^68 7 500
0. 50019 07348 6328 12
0.5001983642578125
0. 5002059936523437
0. 5002 13 623 04 68 750
0. 50022 125244 1 4 62
0. 50022888 18359375
0.50023651 12304687

0. 0000000(794340707
0. 000000065004 6246
0.00000005150 64 584
0. 0000000389395296
0. 0000000273037954
0.00 00000 1 65992 133
0. 0000000068257406
•0.00000000201 66651
•0. 00000000^9280466
0. 00000001 69 0844 66
•0.00000002 295 79 76
0.000000028 764 723
0.0000000322 64183 I

0.000000035 52 1082 7

0.0000000378472138
•0. 000000039242 6192
•0.000000 039 7073407
0.0000000392414217
0. 0000000378449045
0.0000000355178318
•0. 0000000322602458
0.000000028 072 189 5

0. 0000000229537054
0. 00000001 69048360
•0.00 00000099 25 623 7

0.00000000201 61115
0. 00000000682365H5
0. 00000001 6593 6433
0. 0000000272938008
0. 0000000389240880
0.00000005 1484 4 625
0. 0000000649 7488 1

7

a = /3/3

h - 2- 12

Table 5.3

Error for the First Order Approximation for f(x) = "l/x

and a = /3"/3 (Legendre approximation)
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2~ 2V 3
< Error <

2" 2n

The use of the zeros of the Tchebycheff polynomials leads to

the minimum value of |7r(x)|max and yields a value smaller than in the

Legendre case. If it is desirable to control the maximum error, the

Tchebycheff polynomials are preferable.

The zeros of the Legendre polynomial will minimize the RMS value of tt(x)

over the interval

.

5.3 Second Order Interpolation

The process is the same as for linear interpolation except that

— will be approximated by a second degree polynomial in each interval.

The collocation points are found to be, as before, the roots of a Tchebycheff

or Legendre polynomial:

1 2 /3 fT"
Legendre : P

3
(x) = jx ( 5x ~^) wltn roots: ~ J jr> °» \1t

Tchebychev : T
3
(x) = x(4x -3) with roots: - y^-, 0, yj

The roots are of the form: -a, 0, +a.

The change of variable to map [-1, +1] into x
Q

, x, leads to the following

collocation points:

„. . h
,

x
l

+ x

1
a

"o
9

x' -
Xl + X

°
x

3
-

2
.

Let us now derive the equation in a form suitable for hardware implementation.

One would like a formula of the type:
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P 2
(x) = a

Q
+ a,R, + a

2
R where R is the number defined

previously. We have

(x-x'
2
)(x-x'

3 ) (x-x'-jJtx-x^)

p
2
(x) =

(x
1

-x
,

2
)(xrx

,

3
) *1

+
(x'

2
-x'

1

)(x'
2
-x'

3
) H +

(x-x'^Cx-x-'g)

(x
1

3-x'
1

)(x'
3
-x'

2
)
y3'

After some elementary transformations, one obtains the

polynomial

:

P|Cx)-(y^fl-^ylt ^y,)
2a a 2a

-(2+a) y, + 4y ?
- (2-a) y 3

+ (
] -

2
-) R

a

?y'i - 4y
?

+ 2y
3 ?

a

which can be evaluated in several different ways (e.g., parallel multip-

lication or Horner's rule).

The precision can be calculated as follows: We have

(x-x')(x-x' )(x-x' ) ,,,

f(x) - p(x) = J j£
3- f (5).

For the division case,

-- p(x) = (x-x^Mx-x'gMx-x^) x^-,

In the Tchebychev case tt(x) is bounded by:
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3 3

E = -3-iL with a = | or

12./3

E = 3/3h
3

m h
3

8xl2x/3 2
5

The upper bound on the error is, for the first interval [.5, .5 + 2" n
0]

E=
h
3

2
4 = —

h
3

and for the last interval E = -f- and thus

2
5

2
-3n

Q
-5

< Error < 2
" 3n _1

n
Q

= number of bits looked up.

5.4 Higher Order Interpolation and Precision

For interpolations of order higher than 3 it is possible to

obtain speed improvement by using any of the well-known "economical

polynomial evaluations". There are two sources of error when a polynomial

is evaluated. For example in evaluating:

p^x) = a
Q

+ a^,

the two errors are:

(x-x' )(x-x')
1) f(x) - p(x) = °-2 L. f" ( ? ) = E] and

2) the representation of numbers using finite length registers

and multipliers.

In fact one performs
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P-|(x) = (a
Q
+ E

Q
) + (a

1

+ E
1

)(R + E
R )

and the maximum error due to the adder is E
Q

.

The maximum error due to the finite length inputs to the multiplier is:

E
1
R + E

R
a

l

+ E
1
ER^ E

1

+E
R
+E

1
E
R

One can reduce E
Q

relative to (2E-|+E, ) by using more accuracy for the

first constant a
Q

.

The other source of error is then due to the multiplier. The

task of the designer is to optimize the trade-off between time and precision,

Totally parallel evaluation is expensive and requires a large multiplier

whereas semi -parallel multiplication can make use of a smaller multiplier

but is more time consuming.

For example using a 24 x 24 bit multiplier, is it possible to have a

division routine requiring one multiplication cycle time for a precision of

-?4
2

CH
or less?

By using a first order optimal interpolation and looking up 11

bits of the number x, the upper bound of the division routine error will

be:

2
-2n

Q = ^
The formula implemented is

p, (x) = a
Q

+ a-iR. The error on a, and R is called E, . If

-25 -23
E, = 2 the errors can add giving a total error of 2 . The only

solution is to have

a) a bigger multiplier, making the error due to the series

truncation predominate or
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b) for the same multiplier, use smaller intervals and thus

make the error due to the multiplier the predominate.

In the example, if 12 bits of the initial number are looked-up

>

the error due to truncation of the series is bounded by

2
-2n . .,-26

The predominant error is due to the multiplication,

a,xR,

-24
and is 2 because of the 24 x 24 bit multiplier.

5.5 Application to Arbitrary Function Generation in Aviation

Aircraft and engine performance data is received in the form

of plots of performance variables as functions of other system variables.

The functional relationships generally are multivariable and nonlinear,

and can seldom be approximated by analytical equations without intro-

ducing inaccuracies beyond the specification tolerances. Furthermore,

the data is subject to change as experience is gained with the aircraft-

general ly in the direction of increasing complexity.

At present all function generation problems are solved by

software and, as a result, the analytical approximations such as poly-

nomial expansions must also increase in complexity, resulting in a cor-

responding increase in simulation program execution time.

Function generation by linear interpolation of stored data

points is generally superior in aviation to analytical approximations

for two reasons:
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1. Data can be readily programmed directly from plots or

tables without extra design time to develop an approxi-

mation;

2. Increased data complexity can be met with no increase in

execution time, since the interpolation formula does not

change.

Notations

f(x,) and f(x~) are adjacent function values

X-, and x
?

are the corresponding argument values

x is the current argument value

h the difference x~ - x.

Since many functions can use the same breakpoints or argument

values a saving in time and memory space may be realized if the "inter-

polant"
X - X.

Vi - x
i

is shared by the functions. (Typically the interpolant may be shared by

three or more functions in practical cases.)

If fast multiplication and division hardware routines are

available, the majority of the time consumed in the interpolation process

will be due to the "argument search" routine (which can be implemented

in hardware too)

.

The linear interpolation for one variable,

f(x) = Cf(xi+1 ) - f(x.)]
* "

^ + f(x.),
ii-i l x

i+1
- x

i
1



85

requires

1. Argument search: given x, where is x.?

2. One division.

2. One multiplication.

A schematic of the organization of the AU is given next page,
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6. CONCLUSION

The purpose of this investigation was to explore various

methods for generating functions for processors used in aircraft simu-

lators. A small 8-bit CORDIC prototype with microprogrammed control

was constructed implementing the trigonometric mode. Other methods

based on polynomial approximations have also been reviewed. The CORDIC

method has the advantage of simplicity in implementation and, being a

bit by bit method using only addition and shifting as the basic opera-

tions, it can be cheaper to implement than a parallel method. For avia-

tion simulation, it is a matter of choice between the following alter-

natives:

a) A central arithmetic unit performing all the computations

and being time-shared between all the flight instruments.

In this case, obtaining a frequent updating of the in-

struments requires a fast arithmetic unit.

b) Several arithmetic units doing specialized tasks (alti-

tude computation, speed, fuel, ... . Each AU could be a

relatively slow and inexpensive bit-by-bit serial AU.

The design of an aircraft simulation system would use a top-

down development process. Since the simulator in the decentralized

architecture would contain more than one arithmetic unit, the develop-

ment would proceed such that modules could be built and tested as soon

as they are developed.

Operations requiring simple and infrequent computations would

be implemented by CORDIC bit serial algorithms.
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Operations requiring frequent and complex computations (like

function generation in an aircraft) would use polynomial approximation

algorithms for faster execution.

Polynomial approximation methods have been studied which make

use of polynomials other than the Taylor-MacLauri n series currently

used in hardware implementations for division. It has been shown that

better error control is achieved by using Tchebychef polynomials. The

advantage of the parallel algorithms is that they employ multiplicative

operations which can share a single n x n multiplier.

The potential parallelism of these algorithms should be fur-

ther investigated. For example, it is known that a polynomial of

degree n can be evaluated in O(logn) operations. Is it possible to de-

sign (in an array expandable form) an n x n x n multiplier or more

generally an n multiplier? By implementing parallelism at the gate

level (which could be called microparal lelism) , what improvements can

be achieved for special purpose highly parallel and high speed arithmetic

processors?

Since polynomial evaluation lends itself to parallel proces-

sing, what would the time bound on the arithmetic computation of func-

tions become? What improvements would be achieved by replacing the

processors performing binary operations by a 3- or k- processor per-

forming k-nary multiplications and additions?

Function evaluation by hardware means is currently being further

3
investigated as well as some possible designs for an n multiplier.
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7. Appendix
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NUMBER 0F BITS »720

M « ?1

TEST SIGN «?Y

X— > K1*SQRT(X0**2+Y0**2)
Y— >0
Z—>ZO ARCTANCYO/XO)

Kl« 1.6467 60258 12 106
1/K 1-0. 60725293500888

X0 ?• 6072529

YO ?-• 6072529

-180 DEG.<« Z0 <» +180 DEQ

Z0 70

INIT. 0K ?Y

DECIMAL 0NLY ?N

0.6072502136 0.100110110111010011 SUB

0.000000000000000000

0.000000000000000000

-0.6072502136 1 1.011001001000101101 ADD

0.0 0.000000000000000000 SUB

90.0000000000 1.000000000000000000

INITIALIZATI0N

A.l Output for the Trigonometric Mode



0.6078508136 0. 1.001 101 I 01 1 I 01001 1 ADD 91

0.100110110111010011

0.1001101101 1101001

1

0.6072502136 0.

1

001 1 01 1 01 1 1 01 001 1 SUB

•90.0000000000 1 1.000000000000000000 ADD

45.0000000000 0.100000000000000000

FIRST 90 DEG. ROTATION

1.2145004272 1.001101101110100110 ADD

1.001101101110100110

0.000000000000000000

0.0 0.000000000000000000 SUB

45.0000000000 1 1.100000000000000000 ADD

26.5649414063 0.010010111001000000

# SHIFTS

1.2145004272 1.001 101 101 1 101001 10 SUB

0. 100110110111010011

1 1.101100100100010110

-0.6072502136 1 1.011001001000101101 ADD

18.4350585938 1 1 • 1 100101 1 1001 000000 SUB

14.0360641479 0.001001111110110011

# SHIFTS • 1

A.l (cont.)
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1.4142265320 1.011010100000101011

0.000000000000000010

SUB

1 1.111111111111111111

-0.0000036147 1 1.111111111111111111 ADD

>45.0006866455 1 1.011111111111111110

0.0 0.000000000000000000

# SHIFTS 17

SUB

1.4142303467 1.011010100000101100

0.000000000000000001

ADD

0.0

0.000000000000000000

0.000000000000000000 SUB

•45.0006866455 1 1.011111111111111110

0.0 0.000000000000000000

# SHIFTS « 18

C0RDIC VALUES TRUE VALUES

ADD

1.414230346680
0.0

-45.000686645508

1.414163948760
0.0

-45.000000000000

ERR0R IN X

0.00470
**********

0.00153

A.l (cont.)
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NUMBER §F BITS -?20

M ?0

TEST SIQN «7Y

X— >X0
Y— >0
Z~>Z0 (YO/XO)

XO - 7.6

YO m ?- # 3

ZO - 70

INIT. 0K 7Y

DECIMAL 0NLY 7N

0.5999984741 0. ! 001 1 001 1 001 1 001 1

0.000000000000000000

SUB

0.000000000000000000

0.2999992371 1 1.101100110011001101 ADD

0.0 0.000000000000000000

0.5000000000 0.100000000000000000

INITIALIZATI0N

SUB

A. 2 Output for the Linear Mode
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0.5999984741 0.100110011001100110 SUB

0.010011001100110011

0.000000000000000000

0.0 0.000000000000000000 SUB

-0.5000000000 1 1.100000000000000000 ADD

0.2500000000 0.010000000000000000

# SHIFTS m i

0.5999984741 0.100110011001100110 SUB

0.00100110011001 1001

1 1.111101100110011001

-0.1499977112 1 1.110110011001100111 ADD

-0.2500000000 1 1.110000000000000000 SUB

0.1250000000 0.001000000000000000

# SHIFTS « 2

A. 2 (cont.)



0.5999984741 0.100110011001100110

0.000000000000010011

95

SUB

1 1.111111111111111111

-0.0000915527 1 1 . 1 1 1 1 1 1 1 1 1 1 1 1 1 01 000 ADD

-0.4998779297 1 1.100000000000100000

0.0000610352 0.000000000000010000

# SHIFTS * 13

SUB

0.5999984741 0.100110011001100110

0.000000000000001001

SUB

1 1.111111111111111111

-0.0000572205 1 1.111111111111110001 ADD

-0.4999389648 1 1.100000000000010000

0.0000305176 0.000000000000001000

# SHIFTS 14

0.5999984741 0.100110011001100110

0.000000000000000000

SUB

SUB

1 1.111111111111111111

-0.0000305176 1 1.111111111111111000 ADD

-0.4999961853 1 1.100000000000000001

0.0 0.000000000000000000

# SHIFTS » 19

C0RDIC VALUES

SUB

0.599998474121
-0.000030517578
-0.499996185303

TRUE VALUES

0.600000000000
0.0

-0.500000000000

ERR0R IN X

0.00025
**********

0.00076

A. 2 (cont.)
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NUMBER 0F BITS -720

M - 7-1

TEST SIGN *?Z

X— >K2*<XO*C0SH ZO + Y0*SINH ZO)
Y—>K2*(YO*C0SH ZO + XO*SINH ZO)
Z-->0

K2 « 0.82978162013890
1/K2 - 1.20513635844646

XO 71.205136

YO - ?0

-180 DE6.<= ZO <* + 180 DEG

ZO * 7-45

INIT. 0K ?Y

DECIMAL 0NLY ?N

1.2051353455 1.001101001000001111 SUB

0.000000000000000000

0.000000000000000000

0.0 0.000000000000000000 SUB

•45.0000000000 1 1.100000000000000000 ADD

49.4374389648 0.100011001001111101

INITIALIZATI0N

A. 3 Output for the Hyperbolic Mode
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1.2051353455 1.001101001000001111 ADD

0. 1001 101001000001 11

1 1.101 100101 101 11 1 100

-0.6025657654 1 1.011001011011111001 ADD

4.4374465942 0.000011001001111101 SUB

22.9868316650 0.010000010110001010

# SHIFTS « 1

1.0544929504 1.000011011111001101 SUB

0.010000110111 110011

1 1.111011001011011111

-0.3012847900 1 1.101100101101111100 SUB

18.5493850708 1 1.110010110011110011 ADD

11.3090515137 0.001000000010101100

# SHIFTS 2

A. 3 (Cont.)
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1.1254158020 1.001000000001101101

0.000000000000000001

ADD

1 1.111111111111111111

-0.5200729370 1 1.011110101101110010 ADD

0.0003433228 0.000000000000000001

0.0 0.000000000000000000

# SHIFTS - 18

SUB

1.1254119873 1.001000000001101100

0.000000000000000000

ADD

1 1.111111111111111111

-0.5200729370 1 I . 01 1 1 1 01 01 1 01 1 1 00 1 ADD

0.0003433228 0.000000000000000001

0.0 0.000000000000000000

SUB

# SHIFTS 19

C0RDIC VALUES

1. 125411987305
-0.520072937012
0.000343322754

TRUE VALUES

1. 127625629814
0.521095150503
0.0

ERR0R IN X

0.19631
0.19617

**********

A. 3 (Cont.)
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Appendix A. 4 Overview of the Algorithms Proposed By Baker, Ferrari
and Ling
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P.W. Baker [BAK75] presents generalized higher radix algorithms

for some elementary functions. Parallelism is achieved by using fast paral-

lel m-bit multipliers where radix = 2 . They are a generalization of the

CORDIC and deLugish algorithms based on multiplications by prestored

constants of the form (1 + 2" 1

) or ln(l + 2" 1

).

Baker's algorithm for Y/X uses

= 1 = ULii
y

x x n^

where the f are selected to be of the form

(1+d. r'
k

) d.e {0,1 ,2. . . ,r-l}

the algorithm is

Y
i+1

- X^l^r-")

V
i+1

= Y.(W.r- k
)

The first multiplier d, is chosen by table look-up. Then at

each step d. is chosen as the one's complement of a. , a. being the k

2 -ary coefficient of the number x. written base 2
m

. The hardware requires

variable shift networks as in the CORDIC algorithms and, in addition, two

m-bits multipliers.

Ferrari usesa Lagrange interpolation method of the function —

between x = .5 and x = 1. He uses several colloquation points and looks

up the coefficients of the first order interpolating polynomial.
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Ling proposes a high-speed division algorithm based, like

Steffanelli 's on the Taylor expansion of a fraction of the form yj—

.

The eight leading digits of the denominator are looked up and two

multipliers working in parallel are needed to evaluate the approximating

polynomial. This algorithm is designed for 32 bit precision and the

same criticisms hold for both Stefanelli's and Ling's algorithms.
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A. 5 ROM Usage As Proposed By Stefanelli
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Stefanelli proposes a "binary read only memory divider". He

shows the realisation of three inverting circuits computing the reciprocal

Q = -5- of a binary number B. Their main feature is the use of read-only

memories whose function are to provide look-up of prestored polynomial

coefficients, and polynomial values. The three circuits differ only in

the number of bits of the binary number B.

The number B is normalized

B = 1. b
1

b
2

... b
r

b
r+1

... b
m

and the reciprocal is

Q = 0.1, q^ 2
... qm

.

The idea is to split B into two parts B, and B
?

:

6 = 6^ 2~ r B
2

and look up the inverse Q-, of B-,

17- Q
l
=0J

«'l
«'

2 ••• O'm

Then

Q=i= 1 - 1

B
1

+ 2- r B
2

B
l 1 + 2" r ^2

B
l

-Q ]

1 + 2
_r

(B
2
Q

1
)

The fraction is expandable in a Taylor series

1 1 l~X+X _ X •»•
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Q = Q
1

(l-2"
r
Q

1

B
2

+2' 2r
(Q

1

B
2

)

2
- Z'

3r
(Qfi 2 )

3
+....)

Now Q is to be evaluated using a three-stage procedure:

1 - Look Up

2 - Multiplication

3 - Addition/Subtraction.

With current technology r can be chosen to be up to 14 (16K

of memory addresses). If, for example, the first term of the series is

considered, i.e.

Q = Q
1

- 2" r Q^ B
2

The error arises primarily

1) From the truncation error of the series, whose absolute

value is known to be less than the maximum value of the first term

neglected. Here:

-r 2
2) From the computation of 2 Q, Bp

if B
2

is supposed to be known with any desirable precision,

2 2
the error remaining is due to Q, . The number of bits of Q-, is chosen

such that this error is of the same order as the truncation error.

When a higher number of bits are required, the second term of

the series is considered;

Q Q
1

- 2" r Q^ B
2

+ 2" 2r
Q-,

3
B
2

2
.
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However, B
?

can be further split into two parts

B
2 * B

3
+ 2

" S
B
4

in order to avoid too many bits of address for the computation (or

2 3 2 3
look-up of B

2
). The term neglected are Q, B. and Q, B

3
B*.

The first and second schemes are shown in Figures A. 5.1 and

A. 5, 2.

One can criticize the method in that it makes use of the

Taylor polynomial for approximation. Other polynomials exist having

better error behavior for the same cost in terms of ROM requirements and

same speed. Also, a set of small dedicated multipliers is not yery

efficient because they cannot be used for any other functions or even for

multiplication of two full-size numbers. It is also impossible to

use the same topology for sequential evaluation of higher precision

division (more than 32 bits ).
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